

SIS-21-CD02: Prewitt Data Center Feasibility Study for Continental Divide Electric Cooperative

Member:	Continental Divide Electric Cooperative
Project Delivery Point Application	None
Member System Planning Study Code:	SIS-21-CD02
Study Date:	June 29, 2021
Study Prepared By:	Elizabeth Stoneham Kalubowila
Study Reviewed By:	Matthew Haag

Contents

Executive Summary	3
Background	4
Objectives	4
Scope	4
Study Assumptions	5
Base Case	5
Load Modifications	5
Topology Modifications	5
Study Scenarios	5
Scenario A: Existing System	5
Scenario B: Bluewater Service	5
Scenario C: San Fidel Service	5
Scenario D: Double 230 kV circuit	5
Scenario E: New 345 kV circuit	5
Methodology	5
Study Results	6
Cost Estimates	9
Scenario B	9
Scenario D	10
Scenario E	11
Conclusion	11
Appendix A: Modifications	13
Appendix B: Tri-State System Planning Standards	14
Appendix C: Contingency List	15

Executive Summary

CDEC requested this study to evaluate the load-serving capability of Tri-State's PEGS, Bluewater, and San Fidel substations for the purpose of serving a datacenter customer in the 200 – 500 MW range. Benchmark contingency analysis of Scenario A was compared to each of the four load-growth scenarios as described below. Scenario B analyzed Bluewater load-serving, Scenario C analyzed San Fidel load-serving, Scenario D analyzed the load serving ability of a new Ambrosia – PEGS 230 kV double circuit, and Scenario E analyzed the load serving ability of a new Yah-ta-hey – PEGS 345 kV circuit.

As evaluated, Bluewater (Scenario B) and San Fidel (Scenario C) demonstrated limited load serving capabilities. San Fidel was unable to support the 200 and 500 MW load levels. Scenario B demonstrated voltage in compliance with Tri-State's system normal and contingency criteria. Additionally, the 200 MW modeled load resulted in minimal overloads when compared to Scenario A. However, Scenario B's 500 MW load could not be supported due to serious negative impact to the transmission system.

The addition of a second 230 kV PEGS – Ambrosia circuit (Scenario D) and Scenario A demonstrated comparable load serving capabilities for the 200 MW level, with numerous identified system overloads and voltage violations. Substantial capacitive VAR injection was required to meet system normal voltage criteria and would require a load-shedding scheme that dropped datacenter load under select contingencies.

The addition of a new Yah-ta-hey to PEGS 345 kV line and 345 kV PEGS interconnection (Scenario E) demonstrated the least impact the transmission system at every datacenter load level and was the only scenario with no voltage and loading violations at the datacenter's 500 MW load level.

Background

Continental Divide Electric Cooperative (CDEC) is a member of Tri-State Generation and Transmission (Tri-State) with a service territory located in western New Mexico. CDEC is served by transmission lines owned by the Public Service Company of New Mexico (PNM), Tucson Electric Power (TEP), and Tri-State. A potential customer has requested service for a datacenter load that may be located in the Prewitt Industrial area.

Objectives

According to information received from the customer, load would start at 10 MW, grow to 100 MW in year 2, and up to 500MW from the end of year 2 through year 5. For the purposes of this feasibility study, load levels between these 200 – 500 MW bounds were investigated.

Scope

The scope of this report was limited to the transmission system in northwest New Mexico with a focus on the PEGS 230 kV and 115 kV substation. Requested load was integrated into models at the transmission bus-level in order to stress the system at a high level.

Loading on the Western Electricity Coordinating Council (WECC) Southern New Mexico (NM1) transfer path (i.e Path 47) was not monitored or stressed from the originating WECC cases.

Figure 1: Project Area Map

Study Assumptions

Base Case

This study used the WECC heavy summer (HS) case:

• 2024 HS (used to gauge mid to long term heavy loading)

Load Modifications

Loads modeled in the originating case were not changed with the exception of the simulated datacenter load. The load was assumed to have a constant 0.96 lagging power factor.

Topology Modifications

Topology modeled in the originating case was not changed with the exception of simulated 230 kV and 345 kV transmission lines.

Study Scenarios

Scenario A: Existing System

The existing system was evaluated with simulated datacenter load on the PEGS 230 kV bus. The scenarios below were compared to the benchmark case to determine impact to the system.

Scenario B: Bluewater Service

This scenario modeled the datacenter's additional 200 MW and 500 MW of load at Bluewater's 115 kV bus. A new transformer and distribution system were not modeled.

Scenario C: San Fidel Service

This scenario modeled the datacenter's additional 200 MW and 500 MW of load at San Fidel's 115 kV bus. A new transformer and distribution system were not modeled.

Scenario D: Double 230 kV circuit

This scenario modeled the addition of a double 230 kV PEGS – Ambrosia circuit to serve 200 MW and 500 MW of datacenter load on the PEGS 230 kV bus.

Scenario E: New 345 kV circuit

This scenario modeled the addition of a 345 kV transmission line from Yah-ta-hey substation to PEGS and a 345/230 kV transformer at PEGS. Load was modeled on the PEGS 230 kV bus. Transformer losses were not modeled.

Methodology

According to Tri-State's Engineering Standards Bulletin-Criteria for System Planning and Service Standards, the maximum loading on any transmission line will not exceed 100% of its established continuous rating, as determined by the static thermal limits of the transmission line. Facilities exceeding 80% of their ratings will be closely monitored during the study process for remediation.

Other facilities such as transformers and terminal equipment will be allowed to load to 100% continuous capabilities. Acceptable loading for all transmission lines and transformers is to be below 100 percent of their continuous ratings or any applicable emergency ratings during contingencies as specified by the owner of a particular element. No applicable emergency ratings were identified for this study. Tri-State's planning criteria is summarized in Appendix B.

Power flow simulations were performed using PSS/E V33 software. Contingency analysis was performed using ACCC and TPL-004 P-1 contingencies. Results were compared to the benchmark case results. Transformer LTC tap adjustments and Switched Shunts were not allowed to adjust for initial contingency voltage comparisons. Phase Shifting Transformers and Area interchange controls were not utilized.

Study Results

System Normal Analysis

Case		Scenario A:		Scenario B:		Scenario C: San		Scenario D: 230		Scenario E: 345	
	0400	Benc	hmark	Bluewa	ater	F	idel	Double	e Circuit	Lir	าย
	Load Level (MW)	200	500	200	500	200	500	200	500	200	500
	Ambrosia	1.031	0.917	1.025	N/A	N/A	N/A	1.033	0.919	1.035	1.018
Bus	Bisti	1.023	0.971	1.022	N/A	N/A	N/A	1.024	0.972	1.028	1.020
Voltages	Ciniza	1.026	0.963	1.023	N/A	N/A	N/A	1.027	0.966	1.031	1.019
(p.u)	PEGS 115	1.027	0.916	1.017	N/A	N/A	N/A	1.029	0.925	1.035	1.016
	PEGS 230	1.033	0.904	1.033	N/A	N/A	N/A	1.035	0.913	1.037	1.015
Line	Yah-ta-hey										
loading	– Gallup	64.20%	106.07%	62.14%	N/A	N/A	N/A	64.29%	101.34%	31.07%	40.63%
(%)	115 kV										

Table 1: Scenario Comparison

Table 2: Capacitor Bank Results

	Scenario D: 230 Double Circuit				
	Can Sizo	50	100		
	Cap Size	MVAR	MVAR		
	Load Level (MW)	500	500		
Bus Voltages (p.u)	Ambrosia	0.940	0.976		
	Bisti	0.979	0.992		
	Ciniza	0.978	0.992		
	PEGS 115	0.946	0.975		
	PEGS 230	0.938	0.976		

In the above table, "N/A" entries signify that the system cannot support the given load levels in the given area.

For Scenario A and D, datacenter load of 500 MW caused a system normal overload on the Yah-tahey – Gallup 115 kV line, shown in red text.

To facilitate 500 MW load in Scenario D, a capacitor bank in the range of 50 – 100 MVAR must be added to support voltages above Planning's system normal criteria of 0.95 p.u (Appendix B) as shown above in Table 2.

Contingency Analysis

230 kV 230 kV Bench Bench BW 230 kV 345 kV 345 kV Bench BW 0 Double Double 345 kV **Monitored Element** Contingency 200 500 200 Double 200 500 0 MW MW 200 500 0 MW MW MW MW **0 MW** MW MW MW MW Rio Puerco 345 – Cabezon 4CORN RIOPUERC 107% 106% 345 Yahtahey 115 – Gallup 115 AMBROS BISTI 138% 134% Mendoza 115 – Gallup 115 AMBROS BISTI 123% 118% Mendoza 115 – Wingate 115 AMBROS BISTI 117% 112% Cinza 115 – PEGS 115 108% 102% AMBROS BISTI Ciniza 115 – Wingate 115 AMBROS BISTI 116% 111% Yahtahey 115 – McKinley MCKIN_YATAHEY2 127% 126% 345 Ambrosia 115 – Taylor 115 PEGS BLUWATER 168% Bluewater 115 – Taylor 115 PEGS BLUWATER 167% Ambrosia 230 - PEGS 230 PEGS_GEN 160% Yahtahey 115 – Gallup 115 PEGS GEN 147% 128% Mendoza 115 – Gallup 115 PEGS GEN 132% 112% Mendoza – Wingate 115 PEGS GEN 126% 106% Wingate 115 – Ciniza 115 125% 105% PEGS GEN Ciniza 115 – PEGS 115 PEGS GEN 118% Rio Puerco 345 – Four SANJN CABEZON 109% 108% Corners 345 Bluewater 115 - PEGS 115 TAYLOR AMBROS 118%

 Table 3: ACCC Comparison

Scenario A (benchmark) and Scenario D (230 kV double circuit) models did not converge for a single circuit PEGS – Ambrosia 230 kV outage and a double circuit PEGS – Ambrosia 230 kV outage respectively for datacenter load of 500 MW.

As shown above in Table 3, the 230 kV double circuit scenario decreased overloads for some contingencies but did not eliminate them. The only scenario that did not demonstrate any overloads was the 345 kV circuit addition of Scenario E.

Additionally, an outage of the PEGS generator or the Ambrosia – Bisti 230 kV line overloaded the 115 kV system from Yah-ta-hey to Ciniza in Scenario A and D for a 500 MW load level.

Numerous voltage violations were recorded for Scenario A and D for a PEGS generator outage. In Scenario D, the addition of a 100 MVAR capacitor bank removed some violations but a large number of violations still remained.

Cost Estimates

The cost estimates included are planning level and within $\pm 30\%$ of actual project cost.

Scenario B

This scenario would require multiple 115/2.49 kV transformers with a combined maximum capacity of 240 MW and a substation expansion. The 500 MW was scenario was not considered as a viable alternative. Further study is required to determine if 115 kV system upgrades are necessary to maintain reliability while supporting the datacenter's 200 MW load level.

Cost	Qty	Unit Value	Total (\$000)
3PH, 115/24.9kV, 80MVA, w/LTC xfmr	3	\$1,100.00	\$3,300.00
Foundation		1.00%	
Installation		3.00%	
Total Factor		4.00%	\$80.00
Subtotal			\$3,380.00
Substation Yard Expansion	1		\$1,000.00
Subtotal		\$4,380.00	
Land and permitting		1.00%	
Environmental		1.00%	
Surveying		1.00%	
Planning, design and specifications		5.00%	
Non-labor overhead		15.00%	
Supervision and commissioning		3.00%	
Total Factor		26.00%	\$1,138.80
Subtotal		\$5,518.80	
Total project cost in Yr 2022		2.50%	\$5,656.77
Interest during construction (IDC) for			
2022	4.70%	\$259.38	
Cost Estimate with IDC in 202	\$5,916.15		

Table 4: Scenario B Cost Estimate

Scenario D

This scenario would require an additional 230 kV PEGS – Ambrosia circuit, a 50 – 100 MVAR capacitor bank, and potential 115 kV system upgrades. Further study is required to determine optimal size and cost of capacitor bank.

Cost	Qty	Unit Value	Total (\$000)
230kV, 1272kcmil ACSR "Bittern"	14.5 miles	\$735.00	\$17,052.00
Yah-ta-hey - Gallup 115 kV upgrade	4 miles	\$500.00	\$2,000.00
Subtotal			\$19,052.00
230 kV breaker	1	\$109.00	\$109.00
Other protection		50.00%	\$54.50
Subtotal			\$19,215.50
Land and permitting		10.00%	
Environmental		1.00%	
Surveying		1.00%	
Planning, design and specifications		5.00%	
Non-labor overhead		15.00%	
Supervision and commissioning		3.00%	
Total Factor		35.00%	\$6,725.43
Subtotal		\$25,940.93	
Total project cost in Yr 2022		2.50%	\$26,589.45
Interest during construction (IDC) for 2022		4.70%	\$1,219.22
Cost Estimate with IDC in 202	\$27,808.67		

Table 5: Scenario D Cost Estimate

Scenario E

This scenario would require the installation of a 40-mile 345 kV circuit from Yah-ta-hey to PEGS with a 345/230 and two 500 MVA transformers.

Cost	Qty	Unit Value	Total (\$000)
Lattice, 345kV, Bundled 1272kcmil ACSR "Bittern"	40 miles	\$30,160.00	\$1,206,400.00
Subtotal			\$1,206,400.00
3PH, 345/230kV, 500MVA xfmr	2	\$2,000.00	\$4,000.00
Subtotal			\$1,210,400.00
Land and permitting		1.00%	
Environmental		1.00%	
Surveying		1.00%	
Planning, design and specifications		5.00%	
Non-labor overhead		15.00%	
Supervision and commissioning		10.00%	
Total Factor		33.00%	\$399,432.00
Subtotal			\$1,609,832.00
Total project cost in Yr 2022		2.50%	\$1,650,077.80
Interest during construction (IDC) for 2022		4.70%	\$75,662.10
Cost Estimate with IDC in 20	22 dollars		\$1,725,739.90

Table 6: Scenario E Cost Estimate

Conclusion

CDEC requested this study to evaluate the load-serving capability of Tri-State's PEGS, Bluewater, and San Fidel substations for the purpose of serving a datacenter customer in the 200 – 500 MW range. Benchmark contingency analysis in Scenario A was compared to each of the four load-growth scenarios as described below.

As evaluated, Scenario B and C demonstrated limited load serving capabilities. San Fidel was unable to support the 200 and 500 MW load levels. Scenario B (Bluewater) demonstrated voltage in compliance with Tri-State's system normal and contingency criteria. Additionally, fewer overloads were recorded when compared to Scenario A. However, Scenario B's 500 MW load could not be supported due to serious negative impact to the transmission system.

Scenario A and D demonstrated comparable load serving capabilities; numerous system overloads and voltage violations were measured for select contingencies at the datacenter's 500 MW load level. For Scenario D, substantial capacitive VAR injection was required to meet system normal voltage criteria and would require a load-shedding scheme that dropped datacenter load under select contingencies.

Scenario E demonstrated the least impact the transmission system at every load level and was the only scenario with no voltage and loading violations at the datacenters' 500 MW load level.

Appendix A: Modifications

Topology Modifications

Table A1: Line Additions						
Element	Voltage	Conductor Size	Length (miles)	R (p.u)	X (p.u)	B (p.u)
Yah-ta-hey – PEGS 230 kV	345 kV	1272 ACSR	40.0	0.002	0.025	0.275
Ambrosia – PEGS 230 kV (2 nd circuit)	230 kV	1272 ACSR	14.5	0.002	0.021	0.045

Appendix B: Tri-State System Planning Standards

Summary of Tri-State Steady-State Planning Criteria

	Operating Voltages ⁽¹⁾		Maximum Loading ⁽²⁾		
System	(per unit)		stem (per unit) (Percent of Continu		tinuous Rating)
Condition	Maximum	Minimum	Transmission	Other	
			Lines	Facilities	
Normal	1.05	0.95	80/100	100	
N – k	1.10	0.90	100	100	

⁽¹⁾ Exceptions may be granted for high side buses of Load-Tap-Changing (LTC) transformers that violate this criterion, if the corresponding low side busses are well within the criterion.

⁽²⁾ The continuous rating is synonymous with the static thermal rating. Facilities exceeding 80% criteria will be flagged for close scrutiny. By no means, shall the 100% rating be exceeded without regard in planning studies.

Tri-State Voltage Criteria				
	Operating	Delta-		
Conditions	Voltages	V		
Normal (P0 event)	0.95 - 1.05			
Contingency (P1 event)	0.90 - 1.10	8%		
Contingency (P2-P7 event)	0.90 - 1.10	-		

Appendix C: Contingency List

The CON file used with the PSS/E ACCC function is seen below.

CONTINGENCY PEGS_GEN DISCONNECT BUS 12058 END

COM YATAHEY - FT WINGATE CONTINGENCY TATAHEY_FTWIN DISCONNECT BUS 12030 DISCONNECT BUS 10533 END

COM PEGS XFMR CONTINGENCY PEGS_XMFR TRIP LINE FROM BUS 12056 TO BUS 12057 CKT 1 END

COM FT WINGATE - PEGS CONTINGENCY FTWIN_PEGS DISCONNECT BUS 12017 END

COM YATAHEY - PEGS CONTINGENCY YATAHEY_PEGS DISCONNECT BUS 12030 DISCONNECT BUS 10533 DISCONNECT BUS 12089 DISCONNECT BUS 12017 END

COM YATAHEY - GALLUP CONTINGENCY YATAHEY_GALL TRIP LINE FROM BUS 10382 TO BUS 12030 CKT 1 END

COM GALLUP - PEGS CONTINGENCY GALLUP_PEGS DISCONNECT BUS 10533 DISCONNECT BUS 12089 DISCONNECT BUS 12017 END

COM PEGS - BLUEWATER CONTINGENCY PEGS_BW TRIP LINE FROM BUS 12012 TO BUS 12056 CKT 1 END COM PEGS - AMBROSIA LAKE CONTINGENCY PEGS_AMBROS TRIP LINE FROM BUS 10011 TO BUS 12057 CKT 1 END

COM PEGS - AMBROSIA LAKE CONTINGENCY PEGS_AMBROS_both TRIP LINE FROM BUS 10011 TO BUS 12057 CKT 1 TRIP LINE FROM BUS 10011 TO BUS 12057 CKT 2 END

CONTINGENCY AMBROS_BISTI TRIP LINE FROM BUS 10011 TO BUS 10041 CKT 1 END

COM BLUEWATER - TAYLOR CONTINGENCY BW_TAYLOR TRIP LINE FROM BUS 12012 TO BUS 12083 CKT 1 END

CONTINGENCY TAYLOR_AMBROS TRIP LINE FROM BUS 10010 TO BUS 12083 CKT 1 END

COM BLUEWATER - AMBROSIA LAKE CONTINGENCY BW_AMBROS DISCONNECT BUS 12083 END

COM AMBROSIA LAKE - RED MESA CONTINGENCY AMBROS_REDMESA DISCONNECT BUS 10164 DISCONNECT BUS 10260 DISCONNECT BUS 10322 DISCONNECT BUS 12036 END

COM AMBROSIA - WEST MESA CONTINGENCY AMBROS_WESTMESA TRIP LINE FROM BUS 10011 TO BUS 10368 CKT 1 END

COM RED MESA - WEST MESA

CONTINGENCY REDMESA_WESTMESA DISCONNECT BUS 10198 DISCONNECT BUS 10252 END

COM BLUE WATER - GRANTS TAP CONTINGENCY BW_GRANTS TRIP LINE FROM BUS 12012 TO BUS 12035 CKT 1 END

COM GRANTS - SAN FIDEL CONTINGENCY GRANTS_SFIDEL TRIP LINE FROM BUS 12035 TO BUS 12126 CKT 1 END

CONTINGENCY SFIDEL_RT66 TRIP LINE FROM BUS 10709 TO BUS 12126 CKT 1 END

COM GRANTS - RT66 CONTINGENCY GRANTS_RT66 TRIP LINE FROM BUS 12035 TO BUS 12126 CKT 1 TRIP LINE FROM BUS 10709 TO BUS 12126 CKT 1 END

COM BLUE WATER - SAN FIDEL CONTINGENCY BW_SFIDEL TRIP LINE FROM BUS 12012 TO BUS 12035 CKT 1 TRIP LINE FROM BUS 12035 TO BUS 12126 CKT 1 END

COM BLUE WATER - RT66 CONTINGENCY BW_RT66 DISCONNECT BUS 12035 DISCONNECT BUS 12126 END

COM RT66 - WEST MESA CONTINGENCY RT66_WESTMESA DISCONNECT BUS 12044 DISCONNECT BUS 10444 DISCONNECT BUS 10555 END

COM BLUE WATER - WEST MESA CONTINGENCY BW_WMESA DISCONNECT BUS 12035 DISCONNECT BUS 12126 DISCONNECT BUS 12044 DISCONNECT BUS 10444 DISCONNECT BUS 10555 END

COM WEST MESA - ARROYO CONTINGENCY WESTMESA_ARROYO TRIP LINE FROM BUS 10369 TO BUS 11014 CKT 1 END

COM WEST MESA xfmr CONTINGENCY WESTMESA_XFMR TRIP LINE FROM BUS 10368 TO BUS 10371 CKT 1 END

COM MCKIN - YATAHEY T1 CONTINGENCY MCKIN_YATAHEY1 TRIP LINE FROM BUS 10382 TO BUS 160302 CKT 1

END

COM MCKIN - YATAHEY T2 CONTINGENCY MCKIN_YATAHEY2 TRIP LINE FROM BUS 10382 TO BUS 160302 CKT 2

END

COM MCKIN - SPRINGERVIL CKT 1 CONTINGENCY MCKIN_SPRING1 TRIP LINE FROM BUS 160302 TO BUS 160306 CKT 1

END

COM MCKIN - SPRINGERVIL CKT 2 CONTINGENCY MCKIN_SPRING2 TRIP LINE FROM BUS 160302 TO BUS 160306 CKT 2 END

COM MCKIN - SAN JUAN Dummy 1 CONTINGENCY MCKIN_SNJUAN1 TRIP LINE FROM BUS 160302 TO BUS 10292 CKT '&1' END

COM MCKIN - SAN JUAN Dummy 2 CONTINGENCY MCKIN_SNJUAN2 TRIP LINE FROM BUS 160302 TO BUS 10292 CKT '&2' END

COM SPRINGERVILLE - MACHO CONTINGENCY MACHO_SPRINGER TRIP LINE FROM BUS 11047 TO BUS 160306 CKT 1 END

COM SAN JUAN T1 CONTINGENCY SANJUAN_XFMR1 TRIP LINE FROM BUS 10292 TO BUS 10318 CKT 1 END

COM SAN JUAN T2 CONTINGENCY SANJUAN_XFMR2 TRIP LINE FROM BUS 10292 TO BUS 10321 CKT 1 END

COM RIO PUERCO - WEST MESA CONTINGENCY RIOPUERC_WESTMESA1 TRIP LINE FROM BUS 10369 TO BUS 10390 CKT 1 END

COM RIO PUERCO - WEST MESA CONTINGENCY RIOPUERC_WESTMESA2 TRIP LINE FROM BUS 10369 TO BUS 10390 CKT 2 END

CONTINGENCY 4CORN_RIOPUERC_MULTI COM Including Multiline Buses TRIP LINE FROM BUS 10390 TO BUS 14101 CKT '&1' END

COM FOUR CORN - SAN JUAN CONTINGENCY SANJUAN_4CORN TRIP LINE FROM BUS 10292 TO BUS 14101 CKT 1 END

COM SAN JUAN - CABEZON CONTINGENCY SANJN_CABEZON TRIP LINE FROM BUS 10292 TO BUS 10403 CKT 1 END

COM JICARILLA - OJO CONTINGENCY JICARILLA_OJO TRIP LINE FROM BUS 10232 TO BUS 10842 CKT 1 END

CONTINGENCY GREEN_SPRING_MULTI TRIP LINE FROM BUS 160301 TO BUS 160306 CKT '&1' END

END